KEVI CAMP HILL SCHOOL FOR GIRLS ## **COMPUTER SCIENCE** CURRICULUM MAP (YEARS 7-13) | | AUTUMN TERM | SPRING TERM | SUMMER TERM | |------------|---|---|--| | YEAR 7 | Introduction to Camp Hill systems (incl baseline test) Touch typing / Health & Safety Spreadsheets & modelling #1 | BinaryIntroduction to Scratch | Control and flowcharts Text-based adventure game Databases & data capture | | YEAR
8 | Python #1 (i/o, processing and selection) Spreadsheets #2 | Boolean logic gatesCreating websites (HTML & CSS) | Group project - app design dragons' denPhysical computing (micro-bits) | | YEAR
9 | Python #2 (selection, loops and lists) | Algorithms #1 - searching Media storage (graphs, sound, compression) Algorithms #2 - SatNav case study Algorithms #3 - Sorting | Laws relating to computing Intelligence & AI History & Future of Computing | | YEAR
10 | Computer ArchitectureStorage and data | Boolean logicData / BinaryGood design | Networks #1Ethics #1 | | | Computational thinkingPython – basics of programming | Python – string handling, file handling,
functions | Python / programming practiceLow level coding (Little Man Computer) | | YEAR
11 | Networks #2 Cybersecurity Software & methodologies HTML / CSS / Javascript Testing | Algorithms in common use Utility software Law in relation to computers Ethics #2 Revision & exam techniques | Revision & GCSE exams | | | Programming project (non-NEA) | Python / programming on paper | | | YEAR
12 | Computer hardware #1 Low level coding (Little Man Computer) Data structures #1 Binary Operating systems Databases #1 (ERDs) Networks | Legislation & ethics Software methodologies Testing Data structures #2 | Revision for school exams (AS level) | |------------|--|--|---| | | Programming – structured courses
(Python or C#) | Programming – independent development & exploration | Mini project (small groups)NEA (independent programming project) | | YEAR
13 | Hardware #2 Software Recursion Databases #2 (3rd normal form) Data structures #3 Boolean algebra SQL NEA (independent programming project) | Algorithmic complexity Pathfinding algorithms Programming paradigms Programming – exam revision | Revision & A level exams |