CHAPTER 3

1)
$$x = 1, y = 3$$

2)
$$x = -3$$
, $y = 1$

2)
$$x = -3$$
, $y = 1$ 3) $x = 0$, $y = -2$ 4) $x = 3$, $y = 1$

4)
$$x = 3, y = 1$$

5)
$$a = 7$$
, $b = -2$

5)
$$a = 7$$
, $b = -2$ 6) $p = 11/3$, $q = 4/3$

CHALLENGE QUESTIONS:

Question 1

77 cherries

Suppose that Karen has x cherries. Then Lionel has $\frac{1}{3}x$ cherries and Michael has $\frac{1}{2}x$ cherries. Michael has seven more cherries than Lionel and so $\frac{1}{2}x - \frac{1}{3}x = 7$. Therefore $(\frac{1}{2} - \frac{1}{3})x = 7$, that is, $(\frac{3-2}{6})x = 7$, and hence $\frac{1}{6}x = 7$. Therefore x = 42. It follows that Karen has 42 cherries, Lionel has 14 cherries and Michael has 21 cherries. So they have 42 + 14 + 21 = 77cherries between them.

Question 2

2010

Let the two numbers be a and b, where a > b. Then we have a + b = 97 and a-b=37. Hence 2a=134 and therefore a=67 and b=30. The product of 67 and 30 is 2010.

Question 3

length = 15 cm and width = 9 cm

B5 for [x=] 4.5 or $4\frac{1}{2}$ and [y =] -0.5 or $-\frac{1}{2}$ even given as answers

B2 for 5x - y - 8 = 3x + 5y + 4or 3x + y - 4 = 2x - 6y - 3

and **M1dep** for rearranging either equation correctly so that the x's, y's and numbers are combined in one of the equations

M1dep for multiplying one equation to equate coefficients of one variable

M1dep for the correct method to eliminate a variable

If 0 scored SC1 for equating two adjacent sides e.g. 5x - y - 8 = 2x - 4 accept 15 or 9 either way round for

The next M1s are dep on B2 gained. For M1 need an equation with one x term, one y term and one number term and allow one numerical error e.g. 2x - 6y = 12 oe or x + 7y = 1 oe.

allow one numerical error e.g. 2x - 6y = 12 and 2x + 14y = 2

allow one numerical error e.g. 20y = -10

Question 4

15 frogs

Let the number of Brachycephalus frogs and common frogs in the bucket be band c respectively. Note that each Brachycephalus frog has 6 toes and 4 fingers, while a common frog has 10 toes and 8 fingers.

Therefore, 6b + 10c = 122(1); 4b + 8c = 92(2). Subtracting (2) from (1) gives 2b + 2c = 30, so b + c = 15.

Question 5

L = 7

Adding the top row and the middle column gives,

2J + K + 2K + J = 5 + 7 = 12. Hence 3J + 3K = 12. So J + K = 4. The first column shows that J + K + L = 11.

Hence, J + K + L - (J + K) = 11 - 4 = 7. Therefore L = 7.

(It is then possible to deduce that J = 1 and K = 3 and check that each total is correct.)

J	K	J	5
K	K	L	13
L	J	L	15
11	7	15	